Tidal Disruption Events & SN remnant evolution in galactic nuclei

Elena Maria Rossi
Leiden Observatory,
The Netherlands

Aspen meeting, January 22, 2015

Disc formation in TDEs

PhD student C. Bonnerot

SN remnant evolution

PhD student A. Rimoldi

TDE Orbit

 TDEs by SMBHs are from stars in quasi-parabolic orbit

$$|1 - e| \ll (m_*/M)^{1/3} = 10^{-2}$$

Relativistic effects are important

Relativistic Effects

- BH size: Whether a star is swallowed whole or disrupted strongly depends on actual geodetics (Kesden 2012, Emilio's talk)
- Pericenter precession (Hayasaki, Stone & Loeb; Hotaka et al.; Roseanne's talk)
- Lense Thirring (e.g. Stone & Loeb; Hayasaki, Stone & Loeb; Emilio's talk)

Parabolic orbit are computationally challenging

- M/m* >>1 implies large spread of semi-major axis ==> low density, resolution challenge
- Least bound matter takes an infinite time to come back ==> large range in timescales
- ``Solutions"
- Consider smaller M/m^{*} (e.g. talks by MacLeod, Hotaka et al. 15)
- consider highly eccentric orbits (Hayasaki et al. 13, 15)

Parabolic orbit are computationally challenging

- M/m* >>1 implies large spread of semi-major axis ==> low density, resolution challenge
- Least bound matter takes an infinite time to come back ==> large range in timescales
- ``Solutions"
- Consider smaller M/m^{*} (e.g. talks by MacLeod, Hotaka et al. 15)
- consider highly eccentric orbits (Hayasaki et al. 13, 15)

Bonnerot, EMR, Lodato & Price (2015):

Highly eccentric orbit, M= 10⁶ M_{sun}, M/m =10⁶

Bonnerot, EMR, Lodato & Price (2015):

- Highly eccentric orbit and M/m = 10⁶
- Non-rotating black hole
- Use Keplerian and relativistic potential

Bonnerot, EMR, Lodato & Price (2015):

- Highly eccentric orbit and M/m = 10⁶
- Non-rotating black hole
- Use Keplerian and relativistic potential

Tajeda & Rosswog 13

— Center of mass

Relativistic potential

· · · · Schwarzschild metric

Bonnerot, EMR, Lodato & Price (2015):

- Highly eccentric orbit and M/m = 10⁶
- Non-rotating black hole
- Use Keplerian and relativistic potential

Tajeda & Rosswog 13

it reproduces exactly pericenter precession: simulations are as precise but less costly than with full GR code

— Center of mass

Relativistic potential

Schwarzschild metric

Bonnerot, EMR, Lodato & Price (2015):

- Bonnerot, EMR, Lodato & Price (2015): detailed investigation of the circularization process
 - Non-rotating black hole
 - Use Keplerian and relativistic potentia
 - Use isothermal or adiabatic EOS

Disc formation: e=0.8, $R_p = R_t/5 \sim 10 R_g$

Disc formation: e=0.8, $R_p = R_t/5 \sim 10 R_g$

Keplerian, isothermal
Relativistic, isothermal
Relativistic, adiabatic

Disc formation: e=0.8, $R_p = R_t/5 \sim 10 R_g$

Keplerian, isothermal
Relativistic, isothermal
Relativistic, adiabatic

circularization: NO circularization: YES circularization YES

circularization radius

Disc formation: e=0.8, $R_p = R_t/5 \sim 10 R_g$

$2R_{\rm g})^2R_{\rm g}+R_{\rm a}^4v_{\rm a}^2))^{1/2}$ $(R_{ m a}^4 v_{ m a}^2 (-12 GM_{ m h} (R_{ m a}$ $2GM_{ m h}(R_{ m a}$

circularization: YES

 $t_{circ} \sim 5 \times P^* \sim 15 h$

thin ring @ Rc

negligible accretion ~20% accretion

circularization YES

t_{circ} similar to is

thick torus

circularization radius

Disc formation: e=0.8, $R_p = R_t/5 \sim 10 R_g$

$(R_{ m a}^4 v_{ m a}^2 (-12 GM_{ m h} (R_{ m a}))$

circularization: YES

 $t_{circ} \sim 5 \times P^* \sim 15 h$

thin ring @ Rc

negligible accretion ~20% accretion

circularization YES

t_{circ} similar to is

thick torus

Torus Structure in the adiabatic case

Pressure support only at 10% level

Vary the eccentricity

same: ios (isothermal) and $R_p = R_t/5 \sim 10 R_g$

Vary the eccentricity

same: ios (isothermal) and $R_p = R_t/5 \sim 10 R_g$

Vary the eccentricity

same: ios (isothermal) and $R_p = R_t/5 \sim 10 R_g$

Viscous accretion: isothermal case

Thin ring, t_{visc} @ circularization radius $R_c \sim (1+e) R_p \sim (1-e^2) a$

$$\frac{t_{\text{visc}}}{t_{\text{circ}}} = 700 \left(\frac{n_{\text{circ}}}{5}\right)^{-1} \left(\frac{\alpha}{0.1}\right)^{-1} \left(\frac{H/R}{10^{-2}}\right)^{-2} \left(\frac{1 - e^2}{0.36}\right)^{3/2}$$

=> the accretion is not set by fall back

$$\dot{M} \simeq M_*/t_{\rm visc} \approx 40 \dot{M}_{\rm Edd}$$

Towards a parabolic orbit

e> 0.9, $n_{circ} = t_{circ}/P$ *=1 and for e > 0.9992 $t_{visc} = t_{circ}$

=> in the parabolic case you should expect fall back to dictate the accretion rate as $t^{-5/3}$

Viscous accretion: adiabatic case

Thick torus, that extends out to semi-major axis "a": t_{visc} @ a

$$\frac{t_{\rm visc}}{t_{\rm circ}} = 0.3 \, \left(\frac{n_{\rm circ}}{5}\right)^{-1} \left(\frac{\alpha}{0.1}\right)^{-1} \left(\frac{H/R}{1}\right)^{-2}$$

=> marginal: viscous accretion may drain torus while circ. depending on H/R and viscous properties

Towards a parabolic orbit

the ratio is independent of "e" (and a)

=> in the parabolic case MAYBE t^{-5/3}

Spinning Black holes, inclined orbits

crossing **happens** and closer to the black hole

e=0.95 inclination of 45 deg $R_p = R_t / 5$ a=1 isothermal

Bonnerot, EMR in prep

Rimoldi, EMR, Piran & Portegies Zwart (2015)

Supernova explosion in galactic nuclei

- With have heard that stellar nuclear clusters and GC have massive stars (many talks earlier in the week)
- Galactic nuclei have Supermassive Black Holes (yep, we know...)
- Quiescent Supermassive Black Holes have radiative inefficient accretion disc, fed by winds from massive stars

How do supernova remnants evolve in such hostile environment? Do they "live" less?

Numerical method to solve shock in arbitrary density gradients

Analytical solutions only for power-law profiles (e.g. Sadov-Taylor). To investigate more complex environments => numerics

We built a numerical method based on following flow lines along the

shock front

- Kompaneets approximation:
 - Strong shock
 - Flow line velocity 90 deg to shock front
 - Uniform post shock pressure
 - Adiabatic evolution until Temperature < 10⁶ K (~300 km/s)

Galactic Center gas environment

•Shape: Radiative inefficient flow e.g. Quataert 04 Cuadra et al. 06

•Normalisation: Chandra observation @ 0.04 pc n~130 cm⁻³ Baganoff et al. 03

Galactic Center

 For GC densities, deceleration and shearing should be never too severe to shorten the life of a SN remant. => Remnants should be indeed visible in X-rays for a few 10⁴ yr

Magnetar in Galactic Center: where is the SNR?

Magnetar SGR J1745-2900 discovered at ~1 pc from SgA* Kaya Mori et al (2013) with NuSTAR

Its age is
$$P/2\dot{P}\approx 9\times 10^3 yr$$

but no X-ray remnant observed !!!

- •Is the Magnetar much older?
- •Are supernovae from magnetar different, slower?

X-ray Lifetime in other nuclei

Observation Implications

back up slides

Adiabatic or isothermal?

Isothermal if $t_{\rm diff} < t_{\rm circ}$

$$\rho_{\rm sh} < 8 \times 10^{-7} \, \rm g \, cm^{-3} \, \left(\frac{n_{\rm circ}}{5} \right) \left(\frac{H_{\rm sh}}{R_{\star}} \right)^{-2} \left(\frac{a_{\star}}{100 \, R_{\odot}} \right)^{3/2}$$

Shocks that happens close to the SMBH do not satisfied this requirement

Circularization timescale

isothermal case

Vary beta

same: ios (isothermal) and e=0.8

Thursday, January 29, 2015

Vary beta

same: ios (isothermal) and e=0.8

Thursday, January 29, 2015